

International Journal of Pharmacy & Life Sciences

Open Access to Researcher

©2010, Sakun Publishing House and licensed by IJPLS, This is Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited.

Anti Arthritic Indigenous Herbal Drugs: Phyto-chemistry and Possible Mechanism

Kamal Kishor Shukla*

Anand Nagar, Ward No. 8, Near Nescent Public School, Rewa, (M.P) - India

Article info

Abstract

Received: 10/06/23

Revised: 15/07/2023

Accepted: 11/08/2023

© IJPLS

www.ijplsjournal.com

Arthritis is a most troublesome problem in oriental countries like India. It has an ancient presence in the subcontinent's medical traditions. The disorders typically involve with of pain, stiffness, and blockage, including joint, bone, and muscle problems followed by paralysis. Present-day terms for arthritis, rheumatism, and joint disorders reflect the contemporary mix of humoral and biomedical influence in the region. Use of indigenous herbal drugs for the treatment of arthritis is of prime important and is traditionally claimed from ancient folk-lore. The present review focuses on the use of several herbal drugs for the treatment and management of arthritis along with their possible.

Key-words: Arthritis, Indigenous Herbal Drugs, Mechanism

Introduction

RA is a chronic, systemic inflammatory disease predominantly affecting the joints and periarticular tissue. RA still remains a formidable disease, being capable of producing severe crippling deformities and functional disabilities and cartilage destruction and commonly leads to significant disability, caused by no. of pro inflammatory molecules released by macrophages including reactive oxygen species and ecosanoids such as prostaglandins, leukotrines and cytokines. The regulation of these mediators secreted by macrophages and other immune cells¹ and modulation of arachidonic acid metabolism by inhibiting enzymes like Cox and LOX are the potential target for chronic inflammatory conditions. RA is a complex process, involving synovial cell proliferation and fibrosis. degeneration of cartilage and bone erosion. This process is mediated by an interdependent network

cytokines, prostanoids and proteolytic of enzymes.¹⁻³

Need of exploring herbal drugs

Plants are a rich source of various metabolites and they contain two categories of metabolites namely primary and secondary metabolites. Primary metabolites include those substances which contribute a major role in plant structure as well as energy metabolism of the plants. These basically include the primary metabolites like carbohydrates, proteins and fats. Secondary metabolites are the group of chemicals not required by the plant for its structure or function and are comparatively found in less quantity as compared to the primary metabolites. These are a group of non-nutritive dietary components, some of which are utilized by plants in defense system.

*Corresponding Author

The compounds which fall under the category of secondary metabolites are broadly categorized as "phytochemicals". Phytochemicals are the defense molecules present in the plant to protect from various microbes, insects etc. They also act as growth regulators in the plant system. Secondary plant metabolites or phytochemicals possess pharmacological properties. Since then various scientific studies are being carried out to study the therapeutic potential of various plants and their products. Till date many plants have been shown to possess significant anti arthritic role thus proving to be a potential tool in drug discovery and drug development process. The plant, as one of the important sources, still maintains its original place in the treatment of various diseases, including arthritis, with minimum side effects. Considerable studies have been carried out on ethno medicinal plants; however, only few indigenous medicinal plants have attracted the interest of scientists, to investigate them as a remedy for arthritis.⁴⁻⁵

Indigenous Herbal drugs used in arthritic with possible mechanism⁴⁻³⁸

S/No.	Botanical name	Family	Parts and	Chemical constituent	Model used
1.	Abrus precatorius	Leguminosae	Extract used Red and White	Flavones luteolin,	FCA
1.	norus preculorius	Legunnosae	Seeds Ethanol	abrectorin, orientin,	1011
				isoorientin and	
				desmethoxycentaureidin	
2.	Asystasia dalzelliana	Acanthaceae	Leaves	7-0-rutinoside Steroids, flavanoid,	FCA
2.	Asystasta aatzettana	Acantilaceae	Ethanolic	alkaloids, tannins	TCA
3.	Aristolochia bracteata	Aristolochiaceae	Whole plant	Aristrolochic acid,	FCA
			Petroleum	alkaloids, flavanoids.	
			ether, chloroform and		
			methanol		
4.	Butea monosperma.	Fabaceae	Whole plant,	Gallic acid,	FCA
			Petroleum ether	pyrocatechin	
5.	Bauhinia variegate	Caesalpiniaceae	Stem Ethanol	Flavanoid, alkaloids	CFA
6.	Borassus flabellifer	Arecaceae	Male flowers	Steroids, saponins,	FCA
			(inflorescences) Ethanolic	borassosides.	
7.	Capparis spinosa	Capparidaceae	Fruit	Flazin, Guanosine,	AIA
7.	Capparis spinosa	Cappandaceae	Ethanol:Water	Capparine, Guanosine,	AIA
8.	Capparis erythrocarpos	Capparaceae	Roots Ethanolic	Proteins, poly phenols	FCA
9.	Cassia uniflora Mill	Caesalpiniaceae	Leaves	Proteins, poly phenols,	CFA
		_	Petroleum	alpha galactosidase	
			ether, ethyl		
			acetate, methanolic		
10.	Cissampelos pareira	Menispermaceae	Roots Aqueous	Alkaloids, flavanoids	CFA
	1 1		ethanolic	,	
11.	Cleome gynandra	Capparidaceae	Leaves	Alkaloids, carotinoids,	AIA
			Ethanolic	flavanoids, phytates,	
12.	Cocculus hirsutus	Menispermaceae	Leaves	saponins,tannins Alkaloids, carotinoids,	FCA, FIA
12.	Cocculus nirsulus	Memspermaceae	Ethanolic	flavanoids, phytates,	гса, гіа
			Zummone	saponins,tannins	
13.	Costus speciosus	Costaceae	Aerial part	Diosgenin, succinic acid	FCA
			Methanolic		75.
14.	Elaeocarpus sphaericus	Elaeocarpaceae	Fruit Ethanolic	Alkaloids,	FCA
				carbohydrates, glycosides	
15.	Ficus bengalensis	Moraceae	Stem bark	Alkaloids, glycosides	FCA, FIA, AIA
			Methanolic		,,
16.	Glycosmis pentaphylla	Rutaceae	Stem bark	Alkaloids, flavanoids	FCA
			Ethanolic		

Table 1: List of herbal sources of anti-arthritic activity

International Journal of Pharmacy & Life Sciences

Volume 14 Issue 10-12: Oct.-Dec. 2023 2

Review Article CODEN (USA): IJPLCP

17.	Glycyrrhiza glabra	Leguminosae	Rhizomes Methanolic	Alkaloids, glycosides	CFA
18.	Harpagophytum procumbens	Pedaliaceae	Roots Ethanol	Alkaloids, glycosides	FCA
19.	Hybanthus enneaspermus	Violaceae	Whole plant Alcoholic and aqueous	Alkaloids, carbohydrates, glycosides,	FCA
20.	Justicia gendarussa Burm	Acanthaceae	Leaves Ethanolic	Alkaloids, glycosides	FCA, CIA
21.	Lawsonia innermis	Lythraceae	Leaves Hydroalcoholic	Alkaloids, carbohydrates, glycosides, phytosterols, Saponins, tannins, proteins, flavanoids	FCA, FIA
22.	Merremia emarginata Burm	Convolvulaceae	Whole plant Ethanolic	Alkaloids, carbohydrates, glycosides,	FCA
23.	Machilus macrantha	Lauraceae	Bark Petroleum ether, alkaloidal fraction, acetone extracts	Alkaloids, carbohydrates, glycosides,	FCA
24.	Merremia tridentata	Convolvulaceae	Whole plant Ethanol	Ergosie alkaloids, pyrrolidine alkaloids	CFA
25.	Piper longum	Piperaceae	Fruit Aqueous	Alkaloids, steroids, tannins,	FCA
26.	Pongamia pinnata	Fabaceae	Leaves Methanolic	Alkaloids, steroids, tannins, flavanoids and glycosides	FCA
27.	Phyllanthus amarus	Euphorbiaceae	Aqueous	Alkaloids, glycosides, flavanoids,	FCA
28.	Punica granatum	Punicaceae	Seeds Ethanolic	Flavanoids, phenolic compounds	FCA
29.	Pistia stratiotes	Araceae	Leaves Aqueous and ethanolic	Alkaloids, glycosides, steroids, polysaccarides	AIA
30.	Premna serratifolia	Verbenaceae	Wood Ethanol	Alkaloids, steroids, tannins, flavanoids and glycosides	AIA
31.	Randia dumetorum	Rubiaceae	Fruit Methanolic	alkaloids, glycosides, flavanoids,	FCA
32.	Ricinus communis	Euphorbiaceae	Leaves Hydroalcoholic	Alkaloids, glycosides, steroids	FCA
33.	Syzygium cumini	Myrtaceae	Seeds Methanolic	Alkaloids, glycosides,steroi ds, polysaccarides	FCA
34.	Strychnos potatorum	Loganiaceae	Seeds Aqueous	Saponin glycosides, Bsitosterol, carbohydrates	FCA
35.	Sida rhombifolia	Malvaceae	Aerial part Ethanol and aqueous	Alkaloids, glycosides, steroids	AIA
36.	Tamarindus indica	Ceasalpiniaceae	Seeds Alcoholic and aqueous	Alkaloids, glycosides, flavanoids, phenolic compounds	FCA
37.	Tinospora cordifolia	Menispermaceae	Leaves Ethanol	Alkaloids, glycosides, steroids, polysaccarides	FCA

International Journal of Pharmacy & Life Sciences

Volume 14 Issue 10-12: Oct.-Dec. 2023 3

38.	Vernonia anthelmintica	Asteraceae	Seeds Ethanolic	Sterols, sequiterpene lactones, flavones	FCA
39.	Vitex negundo	Verbenaceae	Leaves Ethanolic	Carbohydrates, sterols, alkaloids, glycosides, flavanoids, phenolic compounds	FCA
40.	Wedelia calendulacea	Asteraceae	Leaves Methanol	Flavanoids, phenolic compounds	CFA

Note: FCA- Freund's Complete Adjuvant induced arthritis, AIA- Adjuvant induced arthritis, CIA-Collagen induced arthritis, FIA- Formalin induced arthritis, AIA- Agar induced arthritis, CFA- Complete Freund's Adjuvant induced arthritis

Conclusion

RA is a very common disorder now-a-days. The present review focuses on the phytochemistry and possible mechanism of 40 herbal drugs.

References

- Colburn N (2012). Review of Rheumatology. New York; London, Springer. DOI 10.1007/978-1-84882-093-7. 1-156.
- 2. Ebringer A (2012). Rheumatoid Arthritis and Proteus. *London; New York, Springer.* X: 1-233.
- 3. Faires JS, McCarty DJ. Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet. 1962.
- 4. Danquah CA, Woode E, E Boakye-Gyasi -Anti-arthritic effects of an ethanolic extract of *capparis erythrocarpos* roots in Freund's adjuvant-induced arthritis in rats,J Pharmacol Toxicol, 2011.
- 5. G Amresh, singh PN, Rao Ch.V. Antinociceptive and antiarthritic activity of *Cissampelos pariera* roots, Journal of Ethnopharmacology, 11(3), 2007.
- 6. Han Z, Boyle DL, Manning AM and Firestein GS (1998). AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. *Autoimmunity*, 28; 197-208.
- Jaijesh Paval, Srinivasan Keloth Kaitheri , Bhagath Kumar Potu , Govindan Sreejith , Kumar Raju Suresh, Narayanan Sareesh Naduvil , Moorkoth Sudheer, Comparing the anti-arthritic activities of the plants *Justicia gendarussa* Burm F. and *Withania somnifera* Linn, International Journal of Green Pharmacy 2009.

- 8. Jaijesh Paval, Srinivasan Keloth Kaitheri, Arunachalam Kumar, Sreejith Govindan, Ciraj Ali Mohammed, Raju Suresh Kumar, Sareesh Naduvil Narayanan, Prasad Alathady Maloor1. Anti-arthritic activity of the plant *Tinospora cordifolia* wild. Journal of Herbal Medicine and Toxicology, 5(1), 2011, 11-16.
- 9. Joe B, Wilder RL, Animal models of rheumatoid arthritis, Mol Med Today. 1999 Aug; 5(8):367-9.
- Kamalutheen M, Gopalakrishnan S and Syed Ismail T. Anti-inflammatory and anti-arthritic activities of *Merremia tridentata* (1.) hall. Ejournal of chemistry, 6(4), 2009.
- 11. Kim HY, Kim WU, Cho ML, Lee SK, Yours J, Kim SI, Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255-274) in patients with rheumatoid arthritis. Arthritis Rheum.1999.
- Kore KJ, Shete RV, Desai NV. Anti-arthritic activity of hydroalcoholic extract of *Lawsonia innermis*. Int. J. Drug Dev. & Res., 3 (4), 2011.
- 13. Krishnaswamy Kannan, Robert A. Ortmann,Donald Kimpe, Animal models of rheumatoid arthritis and their relevance to human disease, pathophysiology Volume 12, Issue 3, October 2005.
- 14. Kulkarni YA, Gokhale SB, Veeranjaneyulu A, Effect of *Persea macrantha* against acute inflammation and adjuvant-induced arthritis in rats,Pharmaceutical Biology Journal Volume 47, 2009.
- 15. Kumar Satish and kumar Vivek R. Invitro Antiarthritic activity of isolated fractions from methanolic extract of *Asystasia dalzelliana*

International Journal of Pharmacy & Life Sciences Volume 14 Issue 10-12: Oct.-Dec. 2023 4

leaves. Asian Journal of Pharmaceutical and Clinical Research, 2011.

- 16. Kvien TK, Uhlig T, odegard S, Heiberg MS Epidemiological aspects of rheumatoid arthritis: the sex ratio, Ann N Y Acad Sci. 2006 Jun.
- 17. Kyei Samuel, George A Koffuor and Johnson N Boampong, Antiarthritic effect of aqueous and ethanolic leaf extracts of *Pistia stratiotes* in adjuvant-induced arthritis in Sprague-Dawley rats, J Exp Pharmacol. 2012.
- Malaviya A, Kapoor S, Singh RR, Kumar A, Pande I. Prevalence of rheumatoid arthritis in the adult Indian population. Rheumatology International,1993; 13(4):131-4.
- 19. Mali Sharad M., Arulmozhi Sinnathambi, Anti-arthritic activity of standardized extract of *Phyllanthus amarus in* Freund's complete adjuvant induced arthritis, Biomedicine & Aging, 2011 – Elsevier.
- 20. Marc S. Micozzi (2001) Fundamentals of Complementary and Alternative Medicine Churchill Livingstone.
- 21. Mishra N.K., Bstia S., Mishra G., Chowdary K.A., Patra S., Anti-arthritic activity of *Glycyrrhiza glabra*, *Boswellia serrata* and their synergistic activity in combined formulation studied in freund's adjuvant induced arthritic rats, J Pharm Educ Res Vol. 2, Issue No. 2, December 2011.
- 22. Narendhirakannan R.T. and Limmy T.P., Anti-inflammatory and anti-oxidant properties of *Sida rhombifolia* stems and roots in adjuvant induced arthritic rats, Immunopharmacology and toxicology 2012 -Taylor & Francis
- 23. Newbould BB,Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. J Pharmacol.1963.
- 24. Panchala Aashish H, Patelb Rakesh K., Bhandari Anil, Anti-Arthritic And synergetic activity of *wedelia calendulacea* with methotrexate in adjuvant induced arthritis with cardioprotective activity in rat, pharmacologyonline 3: 175-187 (2011).
- 25. Paschapur Mahesh S, Patil MB, kumar Ravi, Patil Sachin R.. Influence of ethanolic extract of *Borassus flabellifer* L on chemically induced acute arthritis in rats. International Journal of Pharmatech Research, 1(3), 2009.

- 26. Paula FS and Alves JD (2014). Non-tumor necrosis factor-based biologic therapies for rheumatoid arthritis: present, future, and insights into pathogenesis."
- 27. Pearson CM, Waksman BH, Sharp JT. studies of arthritis and other lesions induced in rats by injection of mycobacterial adjuvant. J Exp Med, 1961; 113(3): 485–510.
- 28. Pearson CM, Wood FD. Studies of arthritis and other lesions induced in rats by the injection of mycobacterial adjuvant. VIII. Pathologic details of the arthritis and spondylitis. Am J Pathol. 1963.
- 29. Petchi R Ramesh, Vijaya C, Parusuraman S, Natchiappan Alagu, Devika GS. Anti arthritic effect of ethanolic extract of *Vitex negundo* Linn.,(*Verbenaceae*) in male albino wistar rats. Int.J.Res.Pharm.Sci, 2(2), 2011, 213-218.
- 30. Rahman Mominur MD, Chowdhury Jakir Ahmed, habib Razibul, Saha Barun Kanti, Salauddin ADM and Islam Mohammad Kaisarul, Anti-inflammatory, anti-arthritic and analgesic activity of the alcoholic extracts of the plant *Urginea indica* Kunth. IJPSR, 2011, 2(9), 2320-2324.
- 31. Rajendran Rekha and Ekambaram Krishnakumar. Anti-arthritic activity of *Premna serratifolia* Linn, wood against adjuvant induced arthritis. E-journal of chemistry, 2(2), 2010.
- 32. S Sheetal Chaudhari, Chaudhari Sanjay R., Machindra J. Chavan. Analgesic, antiinflammatory and anti-arthritic activity of *Cassia uniflora* Mill, Asian Pacific Journal of Tropical Biomedicine, 2012.
- 33. Sanmuga Priya Senthamil Ekambaram, Selvan Perumal and Venkataraman Subramania. Evaluation of anti-arthritic activity of Strychnos potatorum Linn seeds in freund's adjuvant induced arthritic rat model. BMC Complementary and Alternative Medicine, 56, 2010, 10-56.
- 34. Sudaroli M. and Chatterjee T. K., Evaluation of red and white seed extracts of *Abrus* precatorius Linn. Against freund's complete adjuvant induced arthritis in rats, Journal of medicinal plants, 2007.
- Tripathy S., Sahoo S. P., Pradhan D., Sahoo S. and Satapathy D. K., Evaluation of anti arthritic potential of *Hybanthus*

enneaspermus, African Journal of Pharmacy and Pharmacology Vol. 3(12). 2009.

- 36. Xie G, Lu Y, Sun Y, Zhang SS, Keystone EC, Gregersen PK, Plenge RM, Amos CI, and Siminovitch KA (2013). Identification of the NF-kB activating protein-like locus as a risk locus for rheumatoid arthritis, Ann Rheum Dis 72(7); 1249-1254.
- 37. Yazici Y and Steiger B (2012). "Kinase inhibitors for the treatment of rheumatoid arthritis." Bull NYU Hosp Jt Dis 70(3): 204-207. Biologics 8: 1-12.
- 38. Yerra Koteswara Rao, Shih-Hua Fang and Yew-Min Tzeng, Antiinflammatory Activities of Flavonoids and a Triterpene Caffeate Isolated from *Bauhinia variegate*,

Phytotherapy research, 2008 - Wiley Online Library.

Cite this article as:

Shukla K.K. (2023). Anti Arthritic Indigenous Herbal Drugs: Phyto-chemistry and Possible Mechanism. *Int. J. of Pharm. & Life Sci.*, 14(10-12): 1-6.

Source of Support: Nil Conflict of Interest: Not declared For reprints contact: ijplsjournal@gmail.com